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After a brief summary of known magic numbers and eigenvalue sums for (a) the 
hydrogenic potential - Ze2/r and (b) the three-dimensional isotropic harmonic oscillator 
potential, approximate semiclassical scaling laws are presented relating to WKB 
eigenvalues for two more complex central potentials V(r). The first is the so-called 
Woods-Saxon potential, used in early work to calculate electronic magic numbers in 
clusters of Na atoms. The second potential V(r) chosen arises from a simple surface 
charge model of almost-spherical carbon cages such as Cm. For these last two potentials, 
semiclassical theory is shown to lead to qualitative insight, without very lengthy 
mathematical calculations. 

Keywords: Inhomogeneous electron liquids; Magic numbers; Eigenvalue sum scaling 

I. INTRODUCTION 

Quantum mechanical courses often start with the bound states of a 
potential well, followed sometimes by a discussion of magic numbers 
in nuclei and in the Periodic Table of elements, based on harmonic 
confinement and on a hydrogenic spectrum, respectively. Of course, to 
obtain the correct magic numbers for nuclei requires a more advanced 
treatment involving spin-orbit coupling. 
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124 I. A. HOWARD er 01. 

Here too, we shall begin with the three-dimensional isotropic 
harmonic oscillator with its eigenvalue spectrum E,,,,~,,,, : 

En,,ny,n, = (n, + ny + n, + 3/2)hv (1.1) 

where v is the classical frequency of the oscillator. The levels, in fact, 
can be labelled with a total quantum number N given by 

N = (n, + ny + nr),  (1 4 
the degeneracy gN of = E~ being given by the number of ways a 
given N can be made up of positive integers n,, n,, and n,, including 
zero, via Eq. (1.2). 

With fermions doubly filling the oscillator levels (1-1), the magic 
numbers N,,, are 2 (n, = n,, = n, = 0), 8 (2 +the three doubly-filled levels 
corresponding to n,, n,,, n, = 1, 0,O and permutations), 20, etc., where, 
for the Nth  closed shell 

which is readily verified to reproduce the three magic numbers cited 
above. We now turn to the eigenvalue sum ESN) corresponding to these 
magic numbers NN. For the first closed shell N = 1, corresponding to 
N =  0 in Eqs. (1.1) and (1.2), E I =  (3/2)hv, and with double degeneracy 

in dimensionless form. Evidently 

and 

7 
2 

e53) = 3 + 15 + 12 - = 60 

etc. In general we can write 
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ELECTRON LIQUIDS IN Na CLUSTERS AND C CAGES 125 

with gN = ( (N+  1)(N+ 2))/2 the level degeneracy for the total energy 
(N+ 3/2)hv. Then, summing [l], we have 

N 
e:N = 7"' +4N2 + 5N + 21 

It is worthy of note that Shea and Aravind [2] have discussed the 
degeneracy for the harmonic oscillator (also for the square well and 
for the hydrogen atom) in arbitrary dimensions. Such considerations 
are currently of interest in relation to Fermion vapours. 

Turning to the simpler H-like atom case in this context, 

ti2 , a,=- 
Z*e2 

En = -- 
2n*ao me2 

and a closed shell of principal quantum number n contains 2n2 
electrons with paired spins, so that with N closed shells 

while the magic numbers NN are given by [l] 

Evidently, by solving the cubic equation (1.5) for N = N(Nn) it 
follows from Eq. (1.4) that 

e(w = e(Nn). (1.6) 

For JV sufficiently large, Eq. (1.5) yields 

and hence 
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126 I. A. HOWARD el al. 

If we insist on the ‘neutrality’ condition N, = Z, then we find 

This is a famous power law - the 7/3 power of 2 for atomic binding 
energies - going back to Milne [3] in 1927. Of course, screening of the 
potential - Ze2/r has to be introduced in ‘real’ atoms, and this reduces 
the coefficient (3/2)’/3- 1.1 in Eq. (1.8) to 0.77 in Milne’s (self- 
consistent field) result. 

With these two somewhat elementary examples to point a direction, 
let us turn next to a central potential V(r) of a more complex form, 
that was used in early work on the electronic magic numbers in 
almost-spherical Na clusters [4]. The inhomogeneous electron density 
in such clusters is, of course, in this model, generated by the chosen 
one-body potential V(r). 

II. THE WOODSSAXON POTENTIAL ESPECIALLY 
FOR ELECTRON LIQUID IN Na CLUSTERS 

The Woods-Saxon potential has the form 

which is evidently a three-parameter function (V, p, and a). As we will 
make use of the WKB approach in this and the following sections, we 
summarize here its basic elements. The WKB expression [5] 

Jl‘2[Z(E - V(X))]’/~~. = (I + 1/2)7r 

where I is an integer, determines the (approximate) bound state 
eigenvalues E for a potential V(x).  (As is known, for the case of the 
Coulomb potential, the above expression gives the exact eigen- 
values for the bound states with Z = ( n - I -  1) and V= Veg-(r)= 
- Z/r+(l+ 1/2)2/2?, where the second term represents the ‘centrifugal 
barrier’, incorporating Langer’s ‘correction’ of I ( I +  1) -+ (I+ 1/2)2). In 
the case of the Woods-Saxon potential, the burden of the argument 
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ELECTRON LIQUIDS IN Na CLUSTERS AND C CAGES 127 

below - now semiclassical in nature since the exact eigenvalue 
spectrum of Eq. (2.1) has to be determined by numerical solution of 
Schroedinger’s equation for eigenfunctions 1ClnIm(r) and corresponding 
eigenvalues - is to exhibit, first of all, an approximate scaling law 
for the WKB eigenvalue s u m  for magic numbers: EYm(V,p,u). 
Essentially, one replaces sums over WKB eigenvalues by integration 
(in the sense of the Euler-Maclaurin summation formula), and this 
suggests, after some further simplification, that one should plot the 
WKB eigenvalue sum Es in units of V against the magic numbers. The 
result’ is shown in Figure 1. For V= 0.218 a.u. used in Ref. [4], the plot 
is largely linear, with the approximate fitting form 

(2.3) 
E S  - = 0.54318 N - 0.69972 
V 

However, when V is increased to twice this value (0.436a.u.) 
corrections are needed to the linear form (2.3). We have also plotted, 
in Figure 2, the eigenvalue sum for a number of values of N, and the 

linear fit: 0.54318 N - 
0.69972 

-0- V = .218 a.u. 
- 9 -  V =  436 8.u. 

0 10 20 30 40 50 60 70 

Atom number N for magic numbers 

FIGURE 1 WKB eigenvalue sum E, in units of V for the Woods-Saxon potential (2.1) 
as calculated for the two values of V recorded on the figure. The smaller of these was the 
value chosen in Ref. [4]; their values of p= 3.93 N’I3a.u. and a= 1.5 a.u. were also used 
in constructing this figure. Note the remarkable linearity for the smaller value of V. 

‘We note that in our treatment here of the Woods-Saxon potential, the Langer 
‘correction’ is not used. 
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-0.096 

-0.100 

n -0.104 
=I 

-0.112 

-0.116 

9 

-0- calculated with V = .218 a.u. 

I ' I ' I ' I - I ' I '  
10 20 30 40 50 60 

number N of atoms 

FIGURE 2 The WKB eigenvalue sum per atom, Es/N, plotted versus the number of 
atoms N for the Woods-Saxon potential (2.1), with Y= 0.218 a.u., and p and a taken as 
for Figure 1. The magic numbers obtained by Knight ef al. [S] for Na clusters at 8,20,40, 
and 58 by numerical solution of the Schroedinger equation are quite evidently correctly 
reproduced using the WKB semiclassical approximation (2.2). 

magic numbers are clearly seen at 8, 20, 40 and 58. Though Figure 2 
involves the WKB approximation, these are the 'exact' values obtained 
for the magic numbers in Ref. [4] by direct numerical solution of the 
Schroedinger equation. 

III. THE TRUNCATED COULOMB POTENTIAL: 
ELECTRON LIQUID IN FULLERENE 

Our second example of magic numbers in an electron liquid relates to 
the so-called March model [6] of almost-spherical C cages. Here, we 
simplify by omitting self-consistency, as in the atomic case above, 
and consider, for example, Cm with the 'European football' shape of 
radius R, using the potential 

r < R  
ze2 

V ( r )  = -- R '  
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ELECTRON LIQUIDS IN Na CLUSTERS AND C CAGES 129 

where Z has to be chosen as 60 to fully neutralize the 60 r-electrons 
which alone are treated by this model. For this case of the truncated 
Coulomb potential we have 

v = V,(r) = - Z / R  + (1 + 1/212/2?, r 5 R 

= -Z / r  + ( I  + 1/2)2 /2? ,  r > R (3.2) 

in Eq. (2.2), and we denote eigenvalues E by En[. The turning points in 
this effective potential are then given by 

and 

(3.4) 

where rl lies in the region r < R, and r2 lies within r > R. In the present 
work we carry out the numerical solution of Eq. (2.2) for the 
eigenvalues E , ~ ,  for a range of values of 2 and R. 

Elsewhere, we have reported WKB eigenvalues for different values 
of Z and R. Here we emphasize the scaled result corresponding to Eq. 
(2.3) for neutral C cages. It should occasion no great surprise that 
-Z2e2/R is the natural energy scale for sufficiently large R (see 
Fig. 3) ,  and then Eq. (2.3) is replaced in the simple surface charge 
model by 

which is discussed briefly in the Appendix. The numerical findings 
are that, as the argument of the functionfbecomes large,f+ 1 (Fig. 4), 
while to regain, for neutral cages, the shape of Eq. (1.8), one must 
have 

f ( x )  o( 213 as x 4 0, (3.6) 

leading to E,"" o< Z7l3 as R + 0. 
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0 0 - -  I 

fit to (-1IR) I 
e 

0 

. I I I I I I I 

FIGURE 3 The WKB eigenvalue sum divided by 2’ for neutral C cages, for the simple 
surface charge model represented by the truncated Coulomb potential (3.1). The fit to 
- 1/R is quantitative for RZ 5 a.u. 

1 0  

0.Q 

I;r̂  0 8  
w 
s!! I solid line: f(x)=(4x)?( 1 + ( 4 ~ ) ~ )  I 9 0 7  

0 6  

0.5 
0 50 100 150 200 250 300 350 400 

z ‘~R=  (a.u.1 

FIGURE 4 The ‘scaling’ function ~(z’/*R~/’) entering ~ q .  (3.5) versus its argument 
Z’’*Pp. A useful approximate analytic fit embodying the limitsf@) + 1 at large x and 
the scaling form (3.5) off(x) as x+O is also shown in the solid curve. 
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IV. SUMMARY 

The WKB method for calculation of eigenvalues in ‘almost spherical’ 
inhomogeneous electron liquids is not demanding numerically even for 
a potential such as that of Woods-Saxon form (Eq. (2.1)). Further- 
more, it is shown here, by comparison with the exact numerical results 
of Knight et al. [4] for this potential, that the WKB eigenvalue sum 
correctly reproduces the magic numbers 8, 20, 40, 58 for almost- 
spherical clusters of Na atoms (see Fig. 1). As Figure 2 shows, for the 
choice of the potential strength V =  0.218 a.u. made by Knight et al. 
[4], at these magic numbers the WKB eigenvalue sum EY*, measured 
in units of V, depends linearly on the magic numbers. However, if V is 
doubled, corrections to the linear form are in evidence. 

The second example is a simple surface charge model of almost- 
spherical C cages. Again, if a basic energy -(Z2e2/R), with 2 the 
positive charge on the cage (+ 60 lel for fullerene) and R the radius of 
the ‘European football’, is used as the unit in which to measure the 
eigenvalue sum, a different, but again simple, scaling is in evidence. 

These two non-trivial examples add to the successes of the 
semiclassical WKB method, which is frequently applied to simple 
standard models in quantum mechanics, and encourage, we feel sure, 
further related studies when a central potential V(r) is a useful 
approximation for molecules (e.g., UF6) and clusters other than alkalis 
such as Na. 
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APPENDIX: SIMPLEST DENSITY-FUNCTIONAL 
(LOCAL DENSITY OR THOMAS-FERMI) 
APPROXIMATION LEADING TO SCALING LAW 
OF THE FORM (3.5) FOR TRUNCATED COULOMB 
POTENTIAL MODEL OF NEUTRAL 
ALMOSTSPHERICAL C CAGES 

The original density-functional theory is the Thomas-Fermi statistical 
method [7,8]. This is fundamentally based on the constancy of the 
chemical potential p throughout the inhomogeneous electron cloud 
of electron density p(r) in the atom, molecule or cluster under 
consideration. As set out in, for example, Ref. [5 ] ,  

and solving for the density p(r) yields the (local) density-potential 
relation of the Thomas-Fermi statistical method as 

p(r) = const. - ~ ( r > 1 ~ / ~  p - V(r) > o 
= o otherwise. “1 

If we now insert the truncated Coulomb potential (3.1), used in the 
main text to model almost-spherical carbon cages, then p can be 
determined as a function of Z and cage radius R by using the density 
normalization condition 

for neutral C cages. One is led then from Eqs. (A2), (A3), and (3.1), 
after some manipulation, to a scaling property (compare Eq. (3.5)), 
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that pw -Ze2/R times a function of Z'l2R3I2. Adding the intuitive 
reasoning that the eigenvalue sum must be of the order of the number 
of electrons (Z for neutral cages) times the chemical potential p leads 
directly to the (of course) approximate scaling relation (3.5). 

It only remains to comment on the connection between the 
semiclassical Thomas-Fermi method and the WKB approximation, 
the latter again having its roots in semiclassical theory. While the 
WKB eigenvalues are discrete, as are the correct Schroedinger energy 
levels, for atoms, molecules and clusters, the Thomas-Fermi approxi- 
mation to the total energy is more drastic, replacing the summation 
over discrete WKB eigenvalues by an integration out to the chemical 
potential p over a continuum with an appropriate semiclassical elec- 
tronic density of energy states. 
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